American University of Beirut

Department of Electrical and Computer Engineering

EECE 310 - Electronics
Midterm - October 24, 2013
Closed Book - No Programmable Calculators
90 minutes

There are 21 problems and 6 pages. All problems are equally graded.

Penalty is 5 to $\mathbf{1}$

(1 to 4 wrong answers do not result in a penalty; 5 to 9 wrong answers cancel one correct answer; 10 to 14 wrong answers cancel two correct answers; and so on)

Name: \qquad ID number: \qquad

Unless otherwise specified, assume that:

$$
\begin{gathered}
V_{\mathrm{T}}=25 \mathrm{mV} \quad \begin{array}{l}
n=1 \quad n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3} \\
J_{p}=-q D_{p} \frac{d p}{d x} \quad J_{n}=q D_{n} \frac{d n}{d x} \\
\frac{\boldsymbol{D}_{\boldsymbol{n}}}{\boldsymbol{\mu}_{\boldsymbol{n}}}=\frac{\boldsymbol{D}_{\boldsymbol{p}}}{\boldsymbol{\mu}_{\boldsymbol{p}}}=\boldsymbol{V}_{\boldsymbol{T}} \\
J_{d}=\left(q p \mu_{p}+q n \mu_{n}\right) E \\
I=J \times A
\end{array}
\end{gathered}
$$

The efficiency of an amplifier loaded by a $1 \mathrm{k} \Omega$ resistor is 43%. The amplifier is powered from a single 8 V DC supply. The supply current is 10 mA . The voltage gain of the amplifier is 45 dB . The input and output voltages are sine waves with zero average.

1. Find the power dissipated (lost) in the amplifier (in mW).
a) 65.6
b) 53.6
c) 61.6
d) 45.6
e) 69.6
2. Find the peak value of the input voltage in (in mV).
a) 34.11
b) 30.18
c) 25.65
d) 46.64
e) 40.86
3. A large forward current is flowing in a Silicon diode. When the diode voltage increases by $\Delta=27 \mathrm{mV}$ (from V_{D} to $V_{D}+\Delta$), this current doubles (from I_{D} to $2 I_{D}$). Find the value of n for this diode.
a) 1.21
b) 1.33
c) 1.44
d) 1.56
e) 1.67

A Zener voltage regulator shown in the figure below uses a diode with $V_{Z 0}=5.6 \mathrm{~V}, r_{Z}=25 \Omega$, and $I_{Z K}=2.5 \mathrm{~mA}$. The supply V_{A} is an unregulated 13.8 V voltage source. Assume $R_{1}=1 \mathrm{k} \Omega$.

4. If the supply voltage V_{A} changes by 0.9 V , what is the corresponding change in the output voltage v_{O} (in mV)?
a) 41.46
b) 26.83
c) 31.71
d) 36.59
e) 21.95

The rectifier in the figure shown below is fed with a voltage $V_{\text {in }}$ having a periodic triangular waveform with a peak value $\mathrm{Vp}=12 \mathrm{~V}$, zero average, and a period of 20 ms . Assume that the diode is ideal.

5. Find the average (DC) value of the output voltage V_{0} (in V).
a) 3
b) 2.75
c) 2.25
d) 2.5
e) 2
6. An $800 \mu \mathrm{~F}$ capacitor is connected in parallel with $R_{L}(=1 \mathrm{k} \Omega)$. Find the output ripple voltage (in mV).
a) 300
b) 250
c) 275
d) 200
e) 225
7. A full-wave bridge rectifier circuit with a purely resistive load operates from a sinusoidal supply through a step-down transformer having a single secondary winding. The RMS voltage at the transformer secondary is 14 V , and the bridge uses four diodes each of which can be modeled to have a 0.7 V drop for any forward current. Find the average voltage across the load (in V).
a) 16.6
b) 9.4
c) 11.2
d) 13.0
e) 14.8

A diode with $n=1$ is operating such that its voltage is $v_{D}=725+3 \cos (100 \pi t) \mathrm{mV}$, and its current is $i_{D}=I_{\mathrm{D}}+0.3 \cos (100 \pi t) \mathrm{mA}$.
8. Find the small-signal resistance r_{d} of this diode (in Ohms).
a) 15
b) 12
c) 10
d) 20
e) 30
9. Estimate the value of the reverse saturation current I_{S} for this diode $\left(\times 10^{-16} \mathrm{~A}\right)$.
a) 5.3
b) 6.4
c) 4.2
d) 2.1
e) 3.2

The diodes in the circuit shown below are ideal. The voltage $V_{\text {in }}$ is sine wave with a 10 V peak value and zero DC component, and $V_{\mathrm{B}}=6 \mathrm{~V}$.

10. Find the maximum forward current in diode D_{2} (in mA).
a) 106.7
b) 100
c) 93.3
d) 80
e) 86.7
11. Find the Peak Inverse Voltage (PIV) of diode D_{2} (in V).
a) 4
b) 5
c) 8
d) 7
e) 6
12. Find the fraction of each cycle during which diode D_{1} conducts.
a) 0.436
b) 0.403
c) 0.369
d) 0.333
e) 0.295

In the circuit shown below, the Zener diode has $V_{Z}=6 \mathrm{~V}$ at $I_{Z}=5 \mathrm{~mA}$, with $r_{Z}=20 \Omega$ and $I_{Z K}=2 \mathrm{~mA}$. Assume $R_{1}=1 \mathrm{k} \Omega, R_{2}=50 \Omega$, and $R_{L}=3.2 \mathrm{k} \Omega$. The source voltage is $v_{s}(t)=13+\boldsymbol{A} \sin (\omega t) \mathrm{V}$.

13. Find the voltage across R_{L} at time $t=0$ (in V).
a) 5.32
b) 5.78
c) 6.24
d) 6.69
e) 7.15
14. Find the maximum value of \boldsymbol{A} (in V) to keep the Zener diode operating in the breakdown region.
a) 3.07
b) 2.42
c) 1.76
d) 3.73
e) 4.39

The doping concentration (density) profile of acceptor atoms in a piece of semiconductor material of length $L=1 \mathrm{~mm}$, is shown in the figure below.
$N_{M I N}$ is much larger than n_{i}, and $N_{M A X}=7 N_{\text {MIN }}$.

15. The hole concentration (density) is largest at $x=x_{1}$, and the free electron concentration (density) is largest at $x=x_{2}$. Find x_{1} and x_{2}.
a) $x_{1}=L, x_{2}=0$
b) $x_{1}=0, x_{2}=L$
c) $x_{1}=L / 2, x_{2}=L / 2$
d) $x_{1}=L, x_{2}=L$
16. What is the direction of flow of the hole diffusion current?
a) Negative y (down)
b) Positive y (up)
c) Unknown
d) Positive x
e) Negative x
17. Under equilibrium conditions, the total current should be zero. Find the magnitude of the electric field E (in V / m) at $x=L / 2$ that must exist to maintain the zero-current condition. Consider majority carriers only.
a) 40.0
b) 38.9
c) 37.5
d) 33.3
e) 35.7

In the circuit shown below, the diodes are modeled by a fixed 0.75 V drop when conducting, and by an open circuit when OFF. The voltage v_{S} is a square wave with zero average, and symmetrical levels at $\pm 8 \mathrm{~V}$. Assume $R_{S}=5 \mathrm{k} \Omega$.

18. Find the diode current (in mA), when the diodes are conducting.
a) 1.7
b) 1.9
c) 1.1
d) 1.3
e) 1.5
19. Find the average (DC) value of the output voltage v_{O} (in V).
a) 4.75
b) 4.25
c) 3.75
d) 3.25
e) 2.75

A nonlinear amplifier is characterized by the equation $v_{\text {OUT }}=a+b \times v_{\text {IN }}{ }^{3}$, where $v_{\text {IN }}$ is the input voltage, and $v_{\text {OUT }}$ is the output voltage. $v_{\mathrm{IN}}(t)$ and $v_{\text {OUT }}(\mathrm{t})$ vary as shown in the figure below, where $v_{\mathrm{IN}}(t)$ is a sine wave that varies between 2.9 V and $3.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{MIN}}=1 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{MAX}}=4.5 \mathrm{~V}$.

20. Find the value of b (in V^{-2}).
a) -0.741
b) -0.648
c) -0.370
d) -0.463
e) -0.556
21. Find the value of a (in V).
a) 23.00
b) 12.00
c) 14.75
d) 17.50
e) 20.25

